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Dipartimento di Fisica, Università di Cagliari and INFN Sezione di Cagliari C.P. 170, I-90142 Monserrato (CA), Italy and
Joint Institute for Nuclear Research BLTP JINR, RU-141980, Dubna, Russian Federation

Received: 30 November 2004 /
Published online: 14 January 2005 – c© Società Italiana di Fisica / Springer-Verlag 2005
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Abstract. Resummation of the soft-gluon radiative corrections for the quark-vector boson vertex is per-
formed within the path-integral (world-line) approach. The leading-order expression for the vacuum-
averaged Wilson integral for an arbitrary gauge field is found in n-dimensional space-time. The cusp
anomalous dimension of the color non-singlet Sudakov form factor of on-mass-shell quark is calculated
in an arbitrary covariant gauge in the one-loop order, and the leading double-logarithmic asymptotical
behavior is obtained from the corresponding evolution equation.

PACS. 12.38.Cy Summation of perturbation theory – 12.38.Lg Other nonperturbative calculations

1 Introduction

Resummation of the logarithmic corrections in high-
energy processes is required to justify effectiveness of the
Standard Model at highest energies accessible at modern
and future colliders (see, e.g., [1] and references therein).
In electroweak processes, the Sudakov corrections can in-
fluence profoundly the cross-sections at e+e− linear collid-
ers at TeV energies, and the precise evaluation of them is
quite important in search for the New Physics, as well as
to test the predictive power of the Standard Model [2]. In
the strong interactions sector, the form factors of quarks
are the most elementary entities exhibiting the double-
logarithmic behavior. The quark form factors being, of
course, unobservable quantities, enter into the quark-
photon and quark-gluon vertices in the calculations of
various QCD processes at the partonic level, and are of
a special theoretical as well as phenomenological impor-
tance [3,4]. Very recently, the investigations of the form
factors of quarks has been connected with the progress in
experimental study of the constituent quarks and search
for the perturbative and non-perturbative effects in their
structure from low to high energy [5–7].

The form factors of the elementary fermions at large
momenta transfers in gauge theories —in QED, and
later in QCD— had been studied extensively since the
fifties [8–12]. In the color singlet case —corresponding to
the elastic on-shell quark scattering in an external electro-
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magnetic field— the exponentiation of the infrared singu-
larities has been proved and the correct leading asymp-
totic at high energy has been obtained [10,13–15]: the
high-energy behavior of the on-mass-shell quark form fac-
tor can be described in terms of the perturbative evolu-
tion equation

F qqγ
[

Q2
]

/F qqγ
[

Q2
0

]

=

exp

(

−

∫ Q2

Q2
0

dµ

2µ
ln
Q2

µ
Γcusp [αs(µ)] +NLO

)

. (1)

In this case, the so-called cusp anomalous dimension reads
in one-loop order [14]

Γ qqγcusp(αs) =
αs
π
CF +O(α2

s) > 0, (2)

and, therefore, the IR-sensitive part of the electromagnetic
quark form factor experiences the Sudakov suppression at
large Q2. On the other hand, it has been shown recently,
that in similar electroweak reactions the cusp anomalous
dimension has the opposite sign for charged bosons W±,
and then the enhancement takes place instead of the sup-
pression [16].

Here we apply the powerful Wilson integrals tech-
niques [14,15,17,18] to study of the Sudakov resummation
of soft-gluon radiative corrections to the quark-vector bo-
son vertex with large transferred momentum. In particu-
lar, we concentrate on the qqg-vertex, since qqγ-vertex can
be trivially restored from the latter. The world-line–based



502 The European Physical Journal A

formulations of quantum theories are actively developed
not only due to the wide range of applications to the stan-
dard perturbative QFT, but also from the point of view
of various string theories (for recent review, see [19] and
references therein).

The very important feature of this approach is that
it does not refer directly to the standard perturbative
techniques and this allows one to avoid diagrammatic cal-
culations which used to be very difficult and involved in
non-Abelian gauge theories. Therefore, it is equally suit-
able for the perturbative as well as non-perturbative cal-
culations [20]. The non-perturbative calculations within
the world-lines approach could be compared with the re-
sults obtained in lattice QCD and other non-perturbative
frameworks. The quark-vector boson vertex, being one of
the fundamental objects in the theory of strong interac-
tions, is under active investigation nowadays. The resum-
mation of the gluon radiative corrections to the qqg-vertex
has a direct relation to the problem of IR behavior, chi-
ral symmetry breaking, and confinement in QCD (see,
ref. [21] and references therein). In high-energy scattering,
it can contribute, e.g., to the amplitude with two-gluon
exchange in the t-channel in the color singlet state.

The RG equation and corresponding gauge-dependent
cusp anomalous dimension which defines the IR properties
of the non-singlet quark form factor were studied for the
first time in ref. [12] in the leading logarithmic approx-
imation within the standard diagrammatic approach. In
the present paper, we make an attempt to generalize the
path-integral formulation to colored quark-vector boson
vertices and found in one-loop order the cusp anomalous
dimension of the averaged path-ordered Wilson exponen-
tial corresponding to the color non-singlet quark form fac-
tor. We point out an erroneous sign of one of the terms of
the anomalous dimension calculated in [12], and find and
check the correct expression. Thus, by virtue of exponen-
tiation, one concludes that the colored-quark form factor
demonstrates the enhancement at large Q2, in contrast to
the colorless case, eq. (1). The origin of this enhancement
is in close connection with the structure of the gauge group
and has the same nature as the similar behavior in the de-
cays of the charged electroweak bosons into fermions [16].

2 Soft-gluon resummation within the

world-line approach

In this section, we generalize the world-line method for
evaluation of the QCD amplitudes with resummed radia-
tive gluon corrections developed in [15] to the case of the
quark-vector boson vertex. For this purpose, let us con-
sider the color non-singlet form factor of a quark which
can be extracted from the amplitude of the quasi-elastic
(color changing) quark scattering (in the given kinemat-
ics) in an external colored (gluon) gauge field: the quark
on a mass shell comes from infinity, emits a hard gluon at

the origin, changes the color, and goes away to infinity:

ui(p1)
[

M
qqV
µ

]a

ij
vj(p2) =

F qqV
[

(p1 − p2)
2; ξ
]

ūi(p1)T
a
ijγµvj(p2), (3)

where p1,2 are the momenta of the incoming and outgoing
quarks, and a, (i, j) are the gluon and quark color indices,
respectively. This vertex is gauge non-invariant, therefore
the dependence from the gauge parameter ξ is included.
We consider the covariant gauge with the following gauge-
fixing term in the Lagrangian:

L
COV
gf = −

λ

2

∑

a

(∂Aa)2, ξ = 1−
1

λ
, (4)

while the other important case—the axial gauge
LAX

gf = −λ′/2(n · A)2—deserves a special attention. For

the choice of kinematics with the large (longitudinal)
momentum transfer between quarks (Sudakov regime),
the interactions of quarks with external gluon, as well as
the (external-)gluon-gluon and gluon-ghost interactions
were shown to be IR-safe, thus they can be neglected in
the considered case [11]. The kinematics is fixed by the
small masses of the quarks and large squared transferred
momentum:

m2 = p2
1 = p2

2 , (p1p2) = m2 coshχ , (p1p2)À m2,
(5)

or

s = (p1 + p2)
2 = 2m2(1 + coshχ),

−Q2 = t = (p1 − p2)
2 = 2m2(1− coshχ),

(s+ t)À (s− t). (6)

According to the Feynman rules, the color structure of
the vertex function (3) is determined by the matrix taij in
the fundamental representation of the Lie algebra of the
color gauge group SU(Nc).

Within the world-line formalism, the two-point (Eu-
clidean) fermionic Green function can be written in terms
of the Polyakov path-integral representation [18,15]:

Gij(x, y) =

−i

∫

dτ e−m
2τ

∫ xτ=y

x0=x

Dx(τ ′)

[

m−
1

2
γ · ẋ(τ)

]

·P exp

(

i

4

∫ τ

0

dτ ′ σµνωµν

)

· exp

(

−
1

4

∫ τ

0

dτ ′ ẋ2(τ ′)

)

·P exp

[

ig

∫ τ

0

dxρÂρ(x(τ
′))

]

ij

. (7)

Here ωµν = τ
2 (ẍµẋν − ẋµẍν) is the Polyakov spin factor,

σµν = [γµ, γν ], (i, j) are the quarks color indices, and τ
′ is

treated as the proper time of a fermion with mass m trav-
eling from the point x at τ ′ = 0 to y at τ ′ = τ . Now we
are interested in the process where a fermion with initial
momentum p1 and color i starts its way at point x, passes
through a point z where it experiences both the large mo-
mentum transfer Q = p1−p2, Q

2 < 0 and the color chang-
ing described by the matrix T aij , and comes finally to point
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y with momentum p2 and color j. This process can be
studied in terms of the three-point vertex function

V µ
ij (x, y, z) = Gii′(x, z)Γ

µ
i′j′Gj′j(z, y), (8)

where the vertex matrix Γ µkl consists of a Dirac component
Γµ = γµ, γ5γ

µ . . . and a color component T akl = δkl, t
a
kl:

Γµkl = Γµ⊗T akl. For simplicity, we will consider the last case
which corresponds to the quark-gluon vertex, while the
color singlet quark-photon result is restored easily. There-
fore, in the momentum space, the vertex function reads

˜[V µ
ij

]a

(p1, p2) =

∑

C
(1)
k

∑

C
(2)
l

Γ̃µ [Ck,l] · T

{

P exp

[

ig

∫

C
(1)
k

dxµ Âµ(x)

]

·T aij · P exp

[

ig

∫

C
(2)
l

dxµ Âµ(x)

]}

, (9)

where the sum over all possible trajectories C
(1,2)
k,l of two

quarks is assumed. The functions Γ µ[Ck,l] accumulate
information about quark propagators. In this language,
the extraction of the soft (long-distance) part can be
performed by choosing a special set of paths with simple
geometry for ordered exponentials in eq. (9). In our
case, one should take for this purpose an angle with
semi-infinite sides that represent the classical trajectories
of the quarks [14,15]. Then, the UV cutoff which arises
in evaluation of the “soft” integrals is identified with the
IR cutoff of the “hard” part. After renormalization of the
soft exponentials (for details, see refs. [13]), one can find
the so-called cusp anomalous dimension which determines
the large-Q2 asymptotic of the form factor

F qqV
[

Q2
]

=

exp

(

−

∫ Q2

Q2
0

dµ

2µ
ln
Q2

µ
Γ qqVcusp [αs(µ)] +NLO

)

. (10)

By virtue of the eq. (9), it is convenient to express
the latter in terms of the vacuum average of the two
path-ordered Wilson exponentials:

T aij F
qqV

[

Q2; ξ
]

=
〈

0
∣

∣

∣
T

{

Wii′T
a
i′j′Wj′j

}∣

∣

∣
0
〉

. (11)

Taking into account that eq. (11) contains, in general,
both UV and IR divergences, we use scales µ2 and λ2 as
the UV and IR regulator, respectively. For the on-mass-
shell quarks, their trajectories are the semi-infinitely
extended paths, and can be parameterized as:

In: xµ = v1
µ τ, τ ∈ [−∞, 0], v1

µ = p1
µ/m, (12)

Out: yν = v2
ν σ, σ ∈ [0,+∞], v2

ν = p2
ν/m. (13)

Thus, the path-ordered exponentials can be written as

Wii′ = P exp

[

ig tαv1
µ

∫ 0

−∞

dσ Aαµ(v
1σ)

]
∣

∣

∣

∣

ii′
(14)

and

Wj′j = P exp

[

ig tβv2
µ

∫ ∞

0

dσ Aβµ(v
2σ)

] ∣

∣

∣

∣

j′j

. (15)

The non-zero contributions (up to O(g2) terms) to
F qqg (11) stem from the terms

W0=δii′δj′jt
a
i′j′ = taij , (16)

W
(1)
LO=−

g2

2
taij CF v

1
µv

1
µ′

·

∫ ∞

0

dσ

∫ ∞

0

dσ′ θ(σ − σ′)Dµµ′

[

v1(σ − σ′)
]

,(17)

W
(2)
LO=−

g2

2
taij CF v

2
µv

2
µ′

·

∫ 0

−∞

dσ

∫ 0

−∞

dσ′ θ(σ − σ′)Dµµ′

[

v2(σ − σ′)
]

,(18)

W
(12)
LO =−

g2

2

(

CF −
CA
2

)

taij v
1
µv

2
ν

·

∫ ∞

0

dτ

∫ ∞

0

dσDµν(v
1τ + v2σ). (19)

Here the free gluon propagator is

〈

0
∣

∣

∣
T Aαµ(x)A

β
ν (y)

∣

∣

∣
0
〉

= Dαβµν (x− y) = δαβDµν(x− y),

(20)
and the following relations have been used:

tαkit
α
il =

N2
c − 1

2Nc

δkl = CF δkl ,

tαijt
α
kl =

1

2

[

δilδjk −
1

Nc

δijδkl

]

. (21)

3 Leading-order contributions for an arbitrary

gauge field

First, we evaluate the vacuum averaged Wilson integral
eq. (11) in n-dimensional space-time, for an arbitrary
gauge field which can be of any origin, for instance— non-
perturbative. Then the general results will be applied in
the case of usual perturbative gluon field.

It is convenient to present the gauge field propagator
Dµν(z) in the form [7]:

Dµν(z) = gµν∂ρ∂
ρD1(z

2)− ∂µ∂νD2(z
2). (22)

Calculation of the integrals (17, 19) requires the following
expressions:

∂ρ∂
ρ = 2n∂+4z2∂2, ∂µ∂ν = 2gµν∂+4zµzν∂

2, ∂ = ∂z2 .
(23)

The scalar products are:

(

v1,2
µ zµ

)2
= (σ − σ′)2, v1

µv
2
νgµν = coshχ ,

v1
µv

2
νzµzν = (v1σ + v2τ)2 coshχ− στ sinh2 χ . (24)
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In order to control UV singularity, the transverse space-
like separation b = (0‖, b⊥) between two points at the
integration path is introduced:

(σ − σ′)2 −→ (σ − σ′)2 − b
2,

(v1σ + v2τ)2 −→ (v1σ + v2τ)2 − b
2. (25)

The path-ordered integrals from eqs. (17), (19) can be
evaluated using the following basic integrals:

∫ ∞

0

dσ dσ′ e−α(σ−σ′)2 = −
1

2α
,

∫ ∞

0

dσ dσ′ σσ′ e−α(σ−σ′)2 = −
1

12α2
,

∫ ∞

0

dσ dτ e−α(σ2+τ2+2στ coshχ) =
1

2α

χ

sinhχ
,

∫ ∞

0

dσ dτ στ e−α(σ2+τ2+2στ coshχ) =

χ cothχ− 1

4α2 sinh2 χ
. (26)

Then, applying the Laplace transform to the invariant
functions Di(u), and its derivatives over u = z2:

D
{k}
i (u) = (−)k

∫ ∞

0

dααk e−αuD̄i(α), (27)

one obtains the following formula:

∫ ∞

0

dσ dσ′D′(u) =
1

2
D(−b

2),

∫ ∞

0

dσ dσ′D′′(u) =
1

2
D′(−b

2), (28)

∫ ∞

0

dσ dσ′ σσ′D′′(u) =
1

12
D(−b

2), (29)

∫ ∞

0

dσ dσ′ (σ − σ′)2D′′(u) = −
1

2
D(−b

2) (30)

for u = (σ − σ′)2 − b
2, and

∫ ∞

0

dσ dτ D′(u) = −
χ

2 sinhχ
D(−b

2),

∫ ∞

0

dσ dτ στD′′(u) =
χ cothχ− 1

4 sinh2 χ
D(−b

2),

∫ ∞

0

dσ dτ (v1σ + v2τ)2D′′(u) =
χ

2 sinhχ
D(−b

2),

∫ ∞

0

dσ dτ D′′(u) =
χ

2 sinhχ
D′(−b

2) (31)

for u = (v1σ + v2τ)2 − b
2.

Thus, one finds the general expressions in n dimensions
and arbitrary covariant gauge, with the gauge field two-

point correlator expressed like in eq. (22):

W (1) =W (2) = −taij
g2

2
CF

·
[

(n− 2)D1(−b
2) + 2b2D′1(−b

2) +D2(−b
2)
]

, (32)

W (12)(χ) = taij g
2

(

CF −
CA
2

)

·
[

χ cothχ
(

(n− 2)D1(−b
2)

+ 2b2D′1(−b
2)
)

+D2(−b
2)
]

(33)

up to O(g4) order terms. Let us emphasize, that eqs. (32),
(33) derived above are valid for any gauge field in the
adjoint representation of the SU(Nc) color group. There-
fore, these results can be used for evaluation of the non-
perturbative, e.g., instanton, contributions to the vacuum-
averaged Wilson integrals in eq. (11).

4 One-loop perturbative contribution

Now let us apply this general result in the particular case
of the perturbative gluon field. Here and in what follows,
the dimensional regularization is used with n = 4 − 2ε,
ε < 0 in order to regulate the IR-divergent terms in the
integrals, respecting, in the same time, the gauge invari-
ance. The gluon propagator in the coordinate space reads

Dµν(z; ξ) =

λ4−n

i

∫

dnk

(2π)n
e−ikz

k2 + i0

[

gµν − ξ
kµkν
k2 + i0

]

=
1

4π2

(

−πλ2
)ε

·

[

gµν
Γ (1− ε)

(z2 − i0)
1−ε + ξ∂µ∂ν

Γ (−ε)

(z2 − i0)
−ε

]

. (34)

The perturbative one-loop invariant functions in eq. (22)
then read

D1(z
2) =

1

16π2

Γ (1− ε)

ε

(

−πλ2z2
)ε
,

D2(z
2) = −ξD1(z

2). (35)

Now eqs. (32), (33) contain the IR singularities at
ε→ 0. Performing the standard renormalization proce-
dure within the MS scheme, described in detail in
refs. [13,14,22], one finds

W
(1)
LO(αs, µ

2/λ2; ξ) =W
(2)
LO(αs, µ

2/λ2; ξ) =

taij
αs
4π
CF

(

1−
ξ

2

)

ln
µ2

λ2
, (36)

and

W
(12)
LO (αs, χ, µ

2/λ2; ξ) =

−taij
αs
2π

(

CF −
CA
2

)[

χ cothχ−
ξ

2

]

ln
µ2

λ2
. (37)

Here the UV-normalization point is taken µ2 = 4b−2.
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Then one needs to combine the expression for the one-
loop contribution to the form factor from eqs. (16), (36),
(37):

F qqV
LO (Q2; ξ) = W0 + 2W

(1)
LO

(

αs,
µ2

λ2

)

+W
(12)
LO

(

αs,
µ2

λ2
, χ

)

+O(α2
s). (38)

The high-energy asymptotic behavior of the form fac-
tor is determined by the (gauge-dependent) cusp anoma-
lous dimension which stems from the renormalization of
the Wilson integral (11) [11,12,14]:
(

µ2 ∂

∂µ2
+ β(αs)

∂

∂αs
+ δ(αs, ξ)ξ

∂

∂ξ

)

lnFNS(Q2) =

−
1

2
Γ qqgcusp

[

αs(µ
2);χ

]

, (39)

with the one-loop functions

β(αs) = µ2 ∂αs
∂µ2

=

−
β0

4π
α2
s +O(α3

s), β0 =
11

3
Nc −

2

3
nf , (40)

and (see ref. [23])

δ(αs; ξ) = µ2 ∂ ln ξ

∂µ2
=

αs
4π
CA

ξ − 1

ξ

[

ξ − 1

2
+

13

6

]

+O(α2
s). (41)

Thus, the calculation of the cusp anomalous dimen-
sion (39) yields in one-loop approximation

Γ qqgcusp

[

αs(µ
2);χ; ξ

]

=

αs
π

[(

CF −
CA
2

)

χ cothχ+
CA
4
ξ − CF

]

+O(α2
s), (42)

where the Casimir operator of SU(Nc) in the adjoint rep-
resentation is used: CA = Nc. Note, that in ref. [12],
the term CAξ/4 in eq. (42) had minus sign. However,
our expression allows to reproduce the color singlet case
by means of the replacement of the color factors: (CF −
CA/2)→ CF , thus obtainig the gauge invariant result (2):

Γ qqγcusp [αs(µ);χ] =
αs
π

[CFχ cothχ+ (CF − CF ) ξ − CF ] +O(α2
s) =

αs
π

N2
c − 1

2Nc

(χ cothχ− 1) +O(α2
s), (43)

yielding the well known Sudakov suppression. The latter
can be considered as a convenient test of the calculations
and confirms the accuracy of our result, eq. (42).

In order to find the large-Q2 asymptotic, we take into
account the limit of the large scattering angle:

χ cothχ ∝ ln
Q2

m2
, χ −→∞ , (44)

and find that, in this limit, the anomalous dimension is
linear in lnQ2 while the gauge-dependent term can be
neglected:

Γ qqgcusp [αs;χ] = Γ qqgcusp [αs] ln
Q2

m2
+O(ln0Q2), (45)

Γ qqgcusp [αs] =
αs
π

(

CF −
CA
2

)

+O(α2
s) < 0. (46)

Note that for the color group SU(3), this anomalous di-
mension (46) has opposite sign compared to the color sin-
glet case eq. (2): this is a direct consequence of the al-
gebra of gauge group generators. Therefore, the leading
(double-logarithmic) behavior of the non-singlet form fac-
tor is given by

F qqg
[

Q2
]

/F qqg
[

Q2
0

]

=

exp

[

−

(

CF −
CA
2

)
∫ Q2

Q2
0

dµ

2µ
ln
Q2

µ

αs(µ)

π
+NLO

]

=

exp

[

2

β0Nc

ln
Q2

Λ2
QCD

ln
lnQ2/Λ2

QCD

lnQ2
0/Λ

2
QCD

+NLO

]

, (47)

that is the increasing function ofQ2. The dependence from
the gauge-fixing parameter ξ drops out of the leading log-
arithmic expression for Γ qqgcusp, eq. (46), and yields no in-
fluence on the main asymptotics.

5 Discussion and conclusions

We derived the general formula for the vacuum aver-
aged Wilson integral (11) in the g2 accuracy. This result
eqs. (32), (33) is found in n dimensions, in an arbitrary
covariant gauge, and is valid as well for any SU(Nc) gauge
field. In the case of a non-perturbative field AµNP ∼ g−1,
this result corresponds to the leading (so-called “weak
field”) order of expansion in field strength, while the de-
pendence on the coupling g drops out.

By using the Wilson integrals techniques, it has been
found that the cusp anomalous dimension for the non-
singlet quark form factor eq. (46) has a negative sign —in
contrast to the singlet case— what leads, in the large-Q2

regime, to the enhancement, rather than suppression, of
the contribution due to the resumed soft-gluon radiative
corrections, eq. (47). The dependence on the gauge-fixing
parameter ξ is shown to be of the order of ln0Q2 —not
surviving in the asymptotical regime.

It is necessary to emphasize that we work here in the
covariant gauge, whereas the case of the axial gauge is
quite important and requires additional analysis (see, e.g.,
refs. [24]). Another important version of the problem—the
case of the off -shell quarks with different masses (appli-
cable, e.g., to flavor-changing processes)— is more tech-
nically involved and will be reported in the forthcoming
work.

Another point which should be noted is that the quark-
gluon vertex is a colored gauge-dependent object and
could not be an observable quantity. In computations of
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the realistic processes when this vertex is inserted into the
diagrams at the partonic level, the role of this enhance-
ment can be reduced due to the emission of gluons, as well
as due to the convolutions of the color indices.
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